Fields
dat: [f64; 2]
Implementations
sourceimpl ComplexF64
impl ComplexF64
sourcepub fn rect(x: f64, y: f64) -> ComplexF64
pub fn rect(x: f64, y: f64) -> ComplexF64
This function uses the rectangular Cartesian components (x,y) to return the complex number z = x + i y.
sourcepub fn polar(r: f64, theta: f64) -> ComplexF64
pub fn polar(r: f64, theta: f64) -> ComplexF64
This function returns the complex number z = r \exp(i \theta) = r (\cos(\theta) + i \sin(\theta)) from the polar representation (r,theta).
sourcepub fn arg(&self) -> f64
pub fn arg(&self) -> f64
This function returns the argument of the complex number z, \arg(z), where -\pi < \arg(z) <= \pi.
sourcepub fn abs2(&self) -> f64
pub fn abs2(&self) -> f64
This function returns the squared magnitude of the complex number z, |z|^2.
sourcepub fn logabs(&self) -> f64
pub fn logabs(&self) -> f64
This function returns the natural logarithm of the magnitude of the complex number z, \log|z|.
It allows an accurate evaluation of \log|z| when |z| is close to one.
The direct evaluation of log(gsl_complex_abs(z)) would lead to a loss of precision in this case.
sourcepub fn add(&self, other: &ComplexF64) -> ComplexF64
pub fn add(&self, other: &ComplexF64) -> ComplexF64
This function returns the sum of the complex numbers a and b, z=a+b.
sourcepub fn sub(&self, other: &ComplexF64) -> ComplexF64
pub fn sub(&self, other: &ComplexF64) -> ComplexF64
This function returns the difference of the complex numbers a and b, z=a-b.
sourcepub fn mul(&self, other: &ComplexF64) -> ComplexF64
pub fn mul(&self, other: &ComplexF64) -> ComplexF64
This function returns the product of the complex numbers a and b, z=ab.
sourcepub fn div(&self, other: &ComplexF64) -> ComplexF64
pub fn div(&self, other: &ComplexF64) -> ComplexF64
This function returns the quotient of the complex numbers a and b, z=a/b.
sourcepub fn add_real(&self, x: f64) -> ComplexF64
pub fn add_real(&self, x: f64) -> ComplexF64
This function returns the sum of the complex number a and the real number x, z=a+x.
sourcepub fn sub_real(&self, x: f64) -> ComplexF64
pub fn sub_real(&self, x: f64) -> ComplexF64
This function returns the difference of the complex number a and the real number x, z=a-x.
sourcepub fn mul_real(&self, x: f64) -> ComplexF64
pub fn mul_real(&self, x: f64) -> ComplexF64
This function returns the product of the complex number a and the real number x, z=ax.
sourcepub fn div_real(&self, x: f64) -> ComplexF64
pub fn div_real(&self, x: f64) -> ComplexF64
This function returns the quotient of the complex number a and the real number x, z=a/x.
sourcepub fn add_imag(&self, x: f64) -> ComplexF64
pub fn add_imag(&self, x: f64) -> ComplexF64
This function returns the sum of the complex number a and the imaginary number iy, z=a+iy.
sourcepub fn sub_imag(&self, x: f64) -> ComplexF64
pub fn sub_imag(&self, x: f64) -> ComplexF64
This function returns the difference of the complex number a and the imaginary number iy, z=a-iy.
sourcepub fn mul_imag(&self, x: f64) -> ComplexF64
pub fn mul_imag(&self, x: f64) -> ComplexF64
This function returns the product of the complex number a and the imaginary number iy, z=a*(iy).
sourcepub fn div_imag(&self, x: f64) -> ComplexF64
pub fn div_imag(&self, x: f64) -> ComplexF64
This function returns the quotient of the complex number a and the imaginary number iy, z=a/(iy).
sourcepub fn conjugate(&self) -> ComplexF64
pub fn conjugate(&self) -> ComplexF64
This function returns the complex conjugate of the complex number z, z^* = x - i y.
sourcepub fn inverse(&self) -> ComplexF64
pub fn inverse(&self) -> ComplexF64
This function returns the inverse, or reciprocal, of the complex number z, 1/z = (x - i y)/ (x^2 + y^2).
sourcepub fn negative(&self) -> ComplexF64
pub fn negative(&self) -> ComplexF64
This function returns the negative of the complex number z, -z = (-x) + i(-y).
sourcepub fn sqrt(&self) -> ComplexF64
pub fn sqrt(&self) -> ComplexF64
This function returns the square root of the complex number z, \sqrt z.
The branch cut is the negative real axis. The result always lies in the right half of the omplex plane.
sourcepub fn sqrt_real(x: f64) -> ComplexF64
pub fn sqrt_real(x: f64) -> ComplexF64
This function returns the complex square root of the real number x, where x may be negative.
sourcepub fn pow(&self, other: &ComplexF64) -> ComplexF64
pub fn pow(&self, other: &ComplexF64) -> ComplexF64
The function returns the complex number z raised to the complex power a, z^a. This is computed as \exp(\log(z)*a) using complex logarithms and complex exponentials.
sourcepub fn pow_real(&self, x: f64) -> ComplexF64
pub fn pow_real(&self, x: f64) -> ComplexF64
This function returns the complex number z raised to the real power x, z^x.
sourcepub fn exp(&self) -> ComplexF64
pub fn exp(&self) -> ComplexF64
This function returns the complex exponential of the complex number z, \exp(z).
sourcepub fn log(&self) -> ComplexF64
pub fn log(&self) -> ComplexF64
This function returns the complex natural logarithm (base e) of the complex number z, \log(z).
The branch cut is the negative real axis.
sourcepub fn log10(&self) -> ComplexF64
pub fn log10(&self) -> ComplexF64
This function returns the complex base-10 logarithm of the complex number z, \log_10 (z).
sourcepub fn log_b(&self, other: &ComplexF64) -> ComplexF64
pub fn log_b(&self, other: &ComplexF64) -> ComplexF64
This function returns the complex base-b logarithm of the complex number z, \log_b(z). This quantity is computed as the ratio \log(z)/\log(b).
sourcepub fn sin(&self) -> ComplexF64
pub fn sin(&self) -> ComplexF64
This function returns the complex sine of the complex number z, \sin(z) = (\exp(iz) - \exp(-iz))/(2i).
sourcepub fn cos(&self) -> ComplexF64
pub fn cos(&self) -> ComplexF64
This function returns the complex cosine of the complex number z, \cos(z) = (\exp(iz) + \exp(-iz))/2.
sourcepub fn tan(&self) -> ComplexF64
pub fn tan(&self) -> ComplexF64
This function returns the complex tangent of the complex number z, \tan(z) = \sin(z)/\cos(z).
sourcepub fn sec(&self) -> ComplexF64
pub fn sec(&self) -> ComplexF64
This function returns the complex secant of the complex number z, \sec(z) = 1/\cos(z).
sourcepub fn csc(&self) -> ComplexF64
pub fn csc(&self) -> ComplexF64
This function returns the complex cosecant of the complex number z, \csc(z) = 1/\sin(z).
sourcepub fn cot(&self) -> ComplexF64
pub fn cot(&self) -> ComplexF64
This function returns the complex cotangent of the complex number z, \cot(z) = 1/\tan(z).
sourcepub fn arcsin(&self) -> ComplexF64
pub fn arcsin(&self) -> ComplexF64
This function returns the complex arcsine of the complex number z, \arcsin(z). The branch cuts are on the real axis, less than -1 and greater than 1.
sourcepub fn arcsin_real(z: f64) -> ComplexF64
pub fn arcsin_real(z: f64) -> ComplexF64
This function returns the complex arcsine of the real number z, \arcsin(z).
- For z between -1 and 1, the function returns a real value in the range [-\pi/2,\pi/2].
- For z less than -1 the result has a real part of -\pi/2 and a positive imaginary part.
- For z greater than 1 the result has a real part of \pi/2 and a negative imaginary part.
sourcepub fn arccos(&self) -> ComplexF64
pub fn arccos(&self) -> ComplexF64
This function returns the complex arccosine of the complex number z, \arccos(z). The branch cuts are on the real axis, less than -1 and greater than 1.
sourcepub fn arccos_real(z: f64) -> ComplexF64
pub fn arccos_real(z: f64) -> ComplexF64
This function returns the complex arccosine of the real number z, \arccos(z).
- For z between -1 and 1, the function returns a real value in the range [0,\pi].
- For z less than -1 the result has a real part of \pi and a negative imaginary part.
- For z greater than 1 the result is purely imaginary and positive.
sourcepub fn arctan(&self) -> ComplexF64
pub fn arctan(&self) -> ComplexF64
This function returns the complex arctangent of the complex number z, \arctan(z). The branch cuts are on the imaginary axis, below -i and above i.
sourcepub fn arcsec(&self) -> ComplexF64
pub fn arcsec(&self) -> ComplexF64
This function returns the complex arcsecant of the complex number z, \arcsec(z) = \arccos(1/z).
sourcepub fn arcsec_real(z: f64) -> ComplexF64
pub fn arcsec_real(z: f64) -> ComplexF64
This function returns the complex arcsecant of the real number z, \arcsec(z) = \arccos(1/z).
sourcepub fn arccsc(&self) -> ComplexF64
pub fn arccsc(&self) -> ComplexF64
This function returns the complex arccosecant of the complex number z, \arccsc(z) = \arcsin(1/z).
sourcepub fn arccsc_real(z: f64) -> ComplexF64
pub fn arccsc_real(z: f64) -> ComplexF64
This function returns the complex arccosecant of the real number z, \arccsc(z) = \arcsin(1/z).
sourcepub fn arccot(&self) -> ComplexF64
pub fn arccot(&self) -> ComplexF64
This function returns the complex arccotangent of the complex number z, \arccot(z) = \arctan(1/z).
sourcepub fn sinh(&self) -> ComplexF64
pub fn sinh(&self) -> ComplexF64
This function returns the complex hyperbolic sine of the complex number z, \sinh(z) = (\exp(z) - \exp(-z))/2.
sourcepub fn cosh(&self) -> ComplexF64
pub fn cosh(&self) -> ComplexF64
This function returns the complex hyperbolic cosine of the complex number z, \cosh(z) = (\exp(z) + \exp(-z))/2.
sourcepub fn tanh(&self) -> ComplexF64
pub fn tanh(&self) -> ComplexF64
This function returns the complex hyperbolic tangent of the complex number z, \tanh(z) = \sinh(z)/\cosh(z).
sourcepub fn sech(&self) -> ComplexF64
pub fn sech(&self) -> ComplexF64
This function returns the complex hyperbolic secant of the complex number z, \sech(z) = 1/\cosh(z).
sourcepub fn csch(&self) -> ComplexF64
pub fn csch(&self) -> ComplexF64
This function returns the complex hyperbolic cosecant of the complex number z, \csch(z) = 1/\sinh(z).
sourcepub fn coth(&self) -> ComplexF64
pub fn coth(&self) -> ComplexF64
This function returns the complex hyperbolic cotangent of the complex number z, \coth(z) = 1/\tanh(z).
sourcepub fn arcsinh(&self) -> ComplexF64
pub fn arcsinh(&self) -> ComplexF64
This function returns the complex hyperbolic arcsine of the complex number z, \arcsinh(z). The branch cuts are on the imaginary axis, below -i and above i.
sourcepub fn arccosh(&self) -> ComplexF64
pub fn arccosh(&self) -> ComplexF64
This function returns the complex hyperbolic arccosine of the complex number z, \arccosh(z). The branch cut is on the real axis, less than 1. Note that in this case we use the negative square root in formula 4.6.21 of Abramowitz & Stegun giving \arccosh(z)=\log(z-\sqrt{z^2-1}).
sourcepub fn arccosh_real(z: f64) -> ComplexF64
pub fn arccosh_real(z: f64) -> ComplexF64
This function returns the complex hyperbolic arccosine of the real number z, \arccosh(z).
sourcepub fn arctanh(&self) -> ComplexF64
pub fn arctanh(&self) -> ComplexF64
This function returns the complex hyperbolic arctangent of the complex number z, \arctanh(z).
The branch cuts are on the real axis, less than -1 and greater than 1.
sourcepub fn arctanh_real(z: f64) -> ComplexF64
pub fn arctanh_real(z: f64) -> ComplexF64
This function returns the complex hyperbolic arctangent of the real number z, \arctanh(z).
sourcepub fn arcsech(&self) -> ComplexF64
pub fn arcsech(&self) -> ComplexF64
This function returns the complex hyperbolic arcsecant of the complex number z, \arcsech(z) = \arccosh(1/z).
sourcepub fn arccsch(&self) -> ComplexF64
pub fn arccsch(&self) -> ComplexF64
This function returns the complex hyperbolic arccosecant of the complex number z, \arccsch(z) = \arcsin(1/z).
sourcepub fn arccoth(&self) -> ComplexF64
pub fn arccoth(&self) -> ComplexF64
This function returns the complex hyperbolic arccotangent of the complex number z, \arccoth(z) = \arctanh(1/z).
pub fn real(&self) -> f64
pub fn imaginary(&self) -> f64
Trait Implementations
sourceimpl Clone for ComplexF64
impl Clone for ComplexF64
sourcefn clone(&self) -> ComplexF64
fn clone(&self) -> ComplexF64
Returns a copy of the value. Read more
1.0.0 · sourcefn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
sourceimpl Debug for ComplexF64
impl Debug for ComplexF64
sourceimpl Default for ComplexF64
impl Default for ComplexF64
sourcefn default() -> ComplexF64
fn default() -> ComplexF64
Returns the “default value” for a type. Read more
sourceimpl PartialEq<ComplexF64> for ComplexF64
impl PartialEq<ComplexF64> for ComplexF64
sourcefn eq(&self, other: &ComplexF64) -> bool
fn eq(&self, other: &ComplexF64) -> bool
This method tests for self
and other
values to be equal, and is used
by ==
. Read more
sourcefn ne(&self, other: &ComplexF64) -> bool
fn ne(&self, other: &ComplexF64) -> bool
This method tests for !=
.
impl Copy for ComplexF64
impl StructuralPartialEq for ComplexF64
Auto Trait Implementations
impl RefUnwindSafe for ComplexF64
impl Send for ComplexF64
impl Sync for ComplexF64
impl Unpin for ComplexF64
impl UnwindSafe for ComplexF64
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcepub fn borrow_mut(&mut self) -> &mut T
pub fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<T> ToOwned for T where
T: Clone,
impl<T> ToOwned for T where
T: Clone,
type Owned = T
type Owned = T
The resulting type after obtaining ownership.
sourcepub fn to_owned(&self) -> T
pub fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
sourcepub fn clone_into(&self, target: &mut T)
pub fn clone_into(&self, target: &mut T)
toowned_clone_into
)Uses borrowed data to replace owned data, usually by cloning. Read more