1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
//! This module provides routines for the orbit integration
//!
//! Here is a quick breakdown of what is going on (see
//! Bajkova & Bobylev ([2020, v1](https://arxiv.org/abs/2008.13624v1))
//! for more details).
//!
//! Let the initial positions and space velocities of a
//! test particle in the heliocentric coordinate system be
//! $ (x_0, y_0 , z_0, u_0, v_0 , w_0) $. The initial positions
//! $ (X, Y, Z) $ and velocities $ (U, V, W) $ of the test
//! particle in Galactic Cartesian coordinates are then given
//! by the formulas:
//!
//! $$
//! X \\, [\text{kpc}] = R_\odot - x_0; \\\\
//! Y \\, [\text{kpc}] = y_0; \\\\
//! Z \\, [\text{kpc}] = z_0 + h_\odot; \\\\
//! U \\, [\text{km} \\, \text{s}^{-1}] = u_0 + u_\odot; \\\\
//! V \\, [\text{km} \\, \text{s}^{-1}] = v_0 + v_\odot + V_\odot; \\\\
//! W \\, [\text{km} \\, \text{s}^{-1}] = w_0 + w_\odot,
//! $$
//!
//! where $ R_\odot = 8.3 \\, \text{kpc} $ and $ V_\odot = 244 \\,
//! \text{km} \\, \text{s}^{-1} $ are the Galactocentric distance
//! and the linear velocity of the Local Standard of Rest around
//! the Galactic center, $ h_\odot = 16 \\, \text{pc} $ (Bobylev &
//! Bajkova (2016)) is the height of the Sun above the Galactic plane,
//! $ (u_\odot, v_\odot, w_\odot) = (11.1, 12.2, 7.3) \pm
//! (0.7, 0.5, 0.4) \\, \\text{km s}^{-1} $ (Schönrich et al., 2010)
//! is the Sun’s peculiar velocity with respect to the Local Standard
//! of Rest.
//!
//! The initial positions $ (R, \psi, Z) $ and their time derivatives
//! $ (\dot{R}, \dot{\psi}, \dot{Z}) $ are then obtained by the
//! formulas:
//!
//! $$
//! R \\, [\text{kpc}] = \sqrt{X^2 + Y^2}; \\\\
//! \psi \\, [\text{rad}] = \text{atan2}(Y, X); \\\\
//! \dot{R} \\, [\text{km} \\, \text{s}^{-1}] = -U \cos{\psi} + V \sin{\psi}; \\\\
//! \dot{\psi} \\, [\text{rad} \\, \text{s}^{-1}] = (U \sin{\psi} + V \cos{\psi})
//! / R \\, [\text{kpc} \rightarrow \text{km}]; \\\\
//! \dot{Z} \\, [\text{km} \\, \text{s}^{-1}] = W.
//! $$
//!
//! From here we obtain the initial values of the canonical moments
//! $ (p_R, p_\psi, p_Z) $:
//!
//! $$
//! p_R \\, [\text{kpc} \\, \text{Myr}^{-1}] = \dot{R} \\, [\text{km} \\, \text{s}^{-1}
//! \rightarrow \text{kpc} \\, \text{Myr}^{-1}]; \\\\
//! p_{\psi} \\, [\text{kpc}^2 \\, \text{rad} \\, \text{Myr}^{-1}] = R^2 \dot{\psi} \\, [\text{s}^{-1}
//! \rightarrow \text{Myr}^{-1}]; \\\\
//! p_Z \\, [\text{kpc} \\, \text{Myr}^{-1}] = \dot{Z} \\, [\text{km} \\, \text{s}^{-1}
//! \rightarrow \text{kpc} \\, \text{Myr}^{-1}].
//! $$
//!
//! Now we're all set to integrate the Lagrangian equations
//!
//! $$
//! \dot{R} \\, [\text{kpc} \\, \text{Myr}^{-1}] = p_R; \\\\
//! \dot{\psi} \\, [\text{rad} \\, \text{Myr}^{-1}] = p_\psi / R^2; \\\\
//! \dot{Z} \\, [\text{kpc} \\, \text{Myr}^{-1}] = p_Z; \\\\
//! \dot{p_R} \\, [\text{kpc} \\, \text{Myr}^{-2}] = - \partial \Phi(R, Z) / \partial R
//! \\, [100 \\, \text{km} \\, \text{s}^{-2} \rightarrow \text{kpc} \\, \text{Myr}^{-2}]
//! + p_\psi^2 / R^3; \\\\
//! \dot{p_\psi} \\, [\text{kpc}^2 \\, \text{Myr}^{-2}] = 0; \\\\
//! \dot{p_Z} \\, [\text{kpc} \\, \text{Myr}^{-2}] = - \partial \Phi(R, Z) / \partial Z
//! \\, [100 \\, \text{km} \\, \text{s}^{-2} \rightarrow \text{kpc} \\, \text{Myr}^{-2}].
//! $$
//!
//! To calculate the total energy, we first obtain radial velocity
//!
//! $$
//! \Pi \\, [\text{km} \\, \text{s}^{-1}] = -U \frac{X}{R} + V \frac{Y}{R} =
//! -(-p_R \\, [\text{kpc} \\, \text{Myr}^{-1} \rightarrow \text{km} \\, \text{s}^{-1}]
//! \cos{\psi} + (p_\psi / R) \\, [\text{kpc} \\, \text{Myr}^{-1} \rightarrow \text{km} \\,
//! \text{s}^{-1}] \sin{\psi}) \cos{\psi} \\\\
//! + (p_R \\, [\text{kpc} \\, \text{Myr}^{-1} \rightarrow \text{km} \\, \text{s}^{-1}]
//! \sin{\psi} - (p_\psi / R) \\, [\text{kpc} \\, \text{Myr}^{-1} \rightarrow \text{km} \\,
//! \text{s}^{-1}] \cos{\psi}) \sin{\psi},
//! $$
//!
//! tangential velocity
//!
//! $$
//! \Theta \\, [\text{km} \\, \text{s}^{-1}] = U \frac{Y}{R} + V \frac{X}{R} =
//! (-p_R \\, [\text{kpc} \\, \text{Myr}^{-1} \rightarrow \text{km} \\, \text{s}^{-1}]
//! \cos{\psi} + (p_\psi / R) \\, [\text{kpc} \\, \text{Myr}^{-1} \rightarrow \text{km} \\,
//! \text{s}^{-1}] \sin{\psi}) \sin{\psi} \\\\
//! + (p_R \\, [\text{kpc} \\, \text{Myr}^{-1} \rightarrow \text{km} \\, \text{s}^{-1}]
//! \sin{\psi} - (p_\psi / R) \\, [\text{kpc} \\, \text{Myr}^{-1} \rightarrow \text{km} \\,
//! \text{s}^{-1}] \cos{\psi}) \cos{\psi},
//! $$
//!
//! and total 3D velocity $ V_\text{tot} \\, [\text{km}^2 \\, \text{s}^{-2}] =
//! \sqrt{\Pi^2 + \Theta^2 + W^2} = \sqrt{\Pi^2 + \Theta^2 + (p_z \\, [\text{kpc} \\,
//! \text{Myr}^{-1} \rightarrow \text{km} \\, \text{s}^{-1}])^2} $.
//!
//! Then we can calculate the total energy $ E \\, [\text{km}^2 \\, \text{s}^{-2}] =
//! \Phi(R, Z) \\, [\text{km}^2 \\, \text{s}^{-2} \rightarrow \text{100} \\,
//! \text{km}^2 \\, \text{s}^{-2}] + V_\text{tot}^2 / 2 $.
use crate::orbit::calc::models::Model;
use crate::{orbit::Orbit, F, I};
mod constants;
use constants::{conversion::Conversions, correction::Corrections};
/// Calculate the right-hand part of the equation for
/// $ \dot{R} $ $\[ \text{kpc} \\, \text{Myr}^{-1} \]$
fn f_r(p_r: F) -> F {
p_r
}
/// Calculate the right-hand part of the equation for
/// $ \dot{\psi} $ $\[ \text{Myr}^{-1} \]$
fn f_psi(r: F, p_psi: F) -> F {
p_psi / r.powi(2)
}
/// Calculate the right-hand part of the equation for
/// $ \dot{z} $ $\[ \text{kpc} \\, \text{Myr}^{-1} \]$
fn f_z(p_z: F) -> F {
p_z
}
/// Calculate the right-hand part of the equation for
/// $ \dot{p_r} $ $\[ \text{kpc} \\, \text{Myr}^{-2} \]$
fn f_p_r(r: F, z: F, p_psi: F, model: &dyn Model) -> F {
-model.phi_dr(r, z).to_kpc_per_myr_2() + p_psi.powi(2) / r.powi(3)
}
/// Calculate the right-hand part of the equation for
/// $ \dot{p_z} $ $\[ \text{kpc} \\, \text{Myr}^{-2} \]$
fn f_p_z(r: F, z: F, model: &dyn Model) -> F {
-model.phi_dz(r, z).to_kpc_per_myr_2()
}
/// Calculate the value of radial velocity
/// $ \Pi $ $\[ \text{km} \\, \text{s}^{-1} \]$
fn radial_velocity(r: F, psi: F, p_r: F, p_psi: F) -> F {
-(-p_r.to_km_per_s() * psi.cos() + (p_psi / r).to_km_per_s() * psi.sin()) * psi.cos()
+ (p_r.to_km_per_s() * psi.sin() + (p_psi / r).to_km_per_s() * psi.cos()) * psi.sin()
}
/// Calculate the value of tangential velocity
/// $ \Theta $ $\[ \text{km} \\, \text{s}^{-1} \]$
fn tangential_velocity(r: F, psi: F, p_r: F, p_psi: F) -> F {
(-p_r.to_km_per_s() * psi.cos() + (p_psi / r).to_km_per_s() * psi.sin()) * psi.sin()
+ (p_r.to_km_per_s() * psi.sin() + (p_psi / r).to_km_per_s() * psi.cos()) * psi.cos()
}
/// Calculate the value of total energy E $\[ \text{km}^2 \\, \text{s}^{-2} \]$
fn total_energy(r: F, psi: F, z: F, p_r: F, p_psi: F, p_z: F, model: &dyn Model) -> F {
(radial_velocity(r, psi, p_r, p_psi).powi(2)
+ tangential_velocity(r, psi, p_r, p_psi).powi(2)
+ p_z.to_km_per_s().powi(2))
/ 2.0
+ model.phi(r, z) * 100.0
}
/// Integrate the orbit using the fourth-order Runge-Kutta algorithm
fn rk4(orbit: &mut Orbit, model: &dyn Model, h: F, s_idx: I, f_idx: I) {
// Prepare buffers for the increments
let mut k_r_1: F;
let mut k_r_2: F;
let mut k_r_3: F;
let mut k_r_4: F;
let mut k_psi_1: F;
let mut k_psi_2: F;
let mut k_psi_3: F;
let mut k_psi_4: F;
let mut k_z_1: F;
let mut k_z_2: F;
let mut k_z_3: F;
let mut k_z_4: F;
let mut k_p_r_1: F;
let mut k_p_r_2: F;
let mut k_p_r_3: F;
let mut k_p_r_4: F;
let mut k_p_z_1: F;
let mut k_p_z_2: F;
let mut k_p_z_3: F;
let mut k_p_z_4: F;
// Prepare aliases
let (r, psi, z, p_r, p_psi, p_z, x, y, e, _, _) = orbit.results.unpack();
// Indices range depends on the forward or reverse mode
for i in s_idx..=f_idx {
// Calculate the increments for all integrable variables
// (except for `p_psi`, since its derivative is 0)
k_r_1 = h * f_r(p_r[i - 1]);
k_psi_1 = h * f_psi(r[i - 1], p_psi[i - 1]);
k_z_1 = h * f_z(p_z[i - 1]);
k_p_r_1 = h * f_p_r(r[i - 1], z[i - 1], p_psi[i - 1], model);
k_p_z_1 = h * f_p_z(r[i - 1], z[i - 1], model);
k_r_2 = h * f_r(p_r[i - 1] + 0.5 * k_p_r_1);
k_psi_2 = h * f_psi(r[i - 1] + 0.5 * k_r_1, p_psi[i - 1]);
k_z_2 = h * f_z(p_z[i - 1] + 0.5 * k_p_z_1);
k_p_r_2 = h * f_p_r(
r[i - 1] + 0.5 * k_r_1,
z[i - 1] + 0.5 * k_z_1,
p_psi[i - 1],
model,
);
k_p_z_2 = h * f_p_z(r[i - 1] + 0.5 * k_r_1, z[i - 1] + 0.5 * k_z_1, model);
k_r_3 = h * f_r(p_r[i - 1] + 0.5 * k_p_r_2);
k_psi_3 = h * f_psi(r[i - 1] + 0.5 * k_r_2, p_psi[i - 1]);
k_z_3 = h * f_z(p_z[i - 1] + 0.5 * k_p_z_2);
k_p_r_3 = h * f_p_r(
r[i - 1] + 0.5 * k_r_2,
z[i - 1] + 0.5 * k_z_2,
p_psi[i - 1],
model,
);
k_p_z_3 = h * f_p_z(r[i - 1] + 0.5 * k_r_2, z[i - 1] + 0.5 * k_z_2, model);
k_r_4 = h * f_r(p_r[i - 1] + k_p_r_3);
k_psi_4 = h * f_psi(r[i - 1] + k_r_3, p_psi[i - 1]);
k_z_4 = h * f_z(p_z[i - 1] + k_p_z_3);
k_p_r_4 = h * f_p_r(r[i - 1] + k_r_3, z[i - 1] + k_z_3, p_psi[i - 1], model);
k_p_z_4 = h * f_p_z(r[i - 1] + k_r_3, z[i - 1] + k_z_3, model);
// Push the next values
// Galactic Cylindrical system
r.push(r[i - 1] + 1.0 / 6.0 * (k_r_1 + 2.0 * k_r_2 + 2.0 * k_r_3 + k_r_4));
psi.push(psi[i - 1] + 1.0 / 6.0 * (k_psi_1 + 2.0 * k_psi_2 + 2.0 * k_psi_3 + k_psi_4));
z.push(z[i - 1] + 1.0 / 6.0 * (k_z_1 + 2.0 * k_z_2 + 2.0 * k_z_3 + k_z_4));
p_r.push(p_r[i - 1] + 1.0 / 6.0 * (k_p_r_1 + 2.0 * k_p_r_2 + 2.0 * k_p_r_3 + k_p_r_4));
p_psi.push(p_psi[i - 1]);
p_z.push(p_z[i - 1] + 1.0 / 6.0 * (k_p_z_1 + 2.0 * k_p_z_2 + 2.0 * k_p_z_3 + k_p_z_4));
// Galactic Cartesian system
x.push(r[i] * psi[i].cos());
y.push(r[i] * psi[i].sin());
// Total energy
e.push(total_energy(
r[i], psi[i], z[i], p_r[i], p_psi[i], p_z[i], model,
));
}
}
impl Orbit {
/// Integrate the orbit with the specified
/// number of iterations `n` and the time step `h`
/// using the fourth-order Runge-Kutta algorithm
pub fn integrate(&mut self, model: &dyn Model, n: I, h: F, rev: bool) {
// Save the number of integrations
self.n = if rev { n * 2 } else { n };
// Prepare aliases
let (x_hc, _, y_hc, _, z_hc, _, u_hc, _, v_hc, _, w_hc, _) = self.hc_initials.unpack();
let (x_gca, y_gca, z_gca, u_gca, v_gca, w_gca) = self.gca_initials.unpack();
let (r_gcy, psi_gcy, z_gcy, dr_gcy, dpsi_gcy, dz_gcy) = self.gcy_initials.unpack();
let (r_res, psi_res, z_res, p_r_res, p_psi_res, p_z_res, x_res, y_res, e_res, _, _) =
self.results.unpack();
// Convert the initial coordinates and velocities
// from the Heliocentric Cartesian system to the
// Galactic Cartesian system
*x_gca = x_hc.to_gca_x();
*y_gca = *y_hc;
*z_gca = z_hc.to_gca_z();
*u_gca = u_hc.to_gca_u();
*v_gca = v_hc.to_gca_v();
*w_gca = w_hc.to_gca_w();
// Convert the initial coordinates and velocities
// from the Galactic Cartesian system to the
// Galactic Cylindrical system
*r_gcy = (x_gca.powi(2) + y_gca.powi(2)).sqrt();
*psi_gcy = y_gca.atan2(*x_gca);
*z_gcy = *z_gca;
*dr_gcy = -*u_gca * psi_gcy.cos() + *v_gca * psi_gcy.sin();
*dpsi_gcy = ((*u_gca * psi_gcy.sin() + *v_gca * psi_gcy.cos()) / *r_gcy).to_kpc();
*dz_gcy = *w_gca;
// Prepare the results vectors
// Solutions of the Lagrangian equations
*r_res = Vec::<F>::with_capacity(self.n + 1);
*psi_res = Vec::<F>::with_capacity(self.n + 1);
*z_res = Vec::<F>::with_capacity(self.n + 1);
*p_r_res = Vec::<F>::with_capacity(self.n + 1);
*p_psi_res = Vec::<F>::with_capacity(self.n + 1);
*p_z_res = Vec::<F>::with_capacity(self.n + 1);
// Galactic Cartesian system
*x_res = Vec::<F>::with_capacity(self.n + 1);
*y_res = Vec::<F>::with_capacity(self.n + 1);
// Total energy
*e_res = Vec::<F>::with_capacity(self.n + 1);
// Push the initial values
// Solutions of the Lagrangian equations
r_res.push(*r_gcy);
psi_res.push(*psi_gcy);
z_res.push(*z_gcy);
p_r_res.push(dr_gcy.to_kpc_per_myr());
p_psi_res.push((r_gcy.powi(2) * *dpsi_gcy).to_seconds());
p_z_res.push(dz_gcy.to_kpc_per_myr());
// Galactic Cartesian system
x_res.push(r_res[0] * psi_res[0].cos());
y_res.push(r_res[0] * psi_res[0].sin());
// Total energy
e_res.push(total_energy(
r_res[0],
psi_res[0],
z_res[0],
p_r_res[0],
p_psi_res[0],
p_z_res[0],
model,
));
// Integrate the orbit using the fourth-order Runge-Kutta algorithm
rk4(self, model, h, 1, n);
// Integrate in reverse if specified by the user
if rev {
rk4(self, model, -h, n + 1, self.n + 1);
}
}
}