1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//
#![allow(clippy::upper_case_acronyms)]
use crate::enums;
use crate::Value;
use ffi::FFI;
ffi_wrapper!(IntegrationFixedType, *const sys::gsl_integration_fixed_type);
impl IntegrationFixedType {
#[doc(alias = "gsl_integration_fixed_legendre")]
pub fn legendre() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_legendre)
}
#[doc(alias = "gsl_integration_fixed_chebyshev")]
pub fn chebyshev() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_chebyshev)
}
#[doc(alias = "gsl_integration_fixed_chebyshev2")]
pub fn chebyshev2() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_chebyshev2)
}
#[doc(alias = "gsl_integration_fixed_gegenbauer")]
pub fn gegenbauer() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_gegenbauer)
}
#[doc(alias = "gsl_integration_fixed_jacobi")]
pub fn jacobi() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_jacobi)
}
#[doc(alias = "gsl_integration_fixed_laguerre")]
pub fn laguerre() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_laguerre)
}
#[doc(alias = "gsl_integration_fixed_hermite")]
pub fn hermite() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_hermite)
}
#[doc(alias = "gsl_integration_fixed_exponential")]
pub fn exponential() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_exponential)
}
#[doc(alias = "gsl_integration_fixed_rational")]
pub fn rational() -> IntegrationFixedType {
ffi_wrap!(gsl_integration_fixed_rational)
}
}
ffi_wrapper!(
IntegrationFixedWorkspace,
*mut sys::gsl_integration_fixed_workspace,
gsl_integration_fixed_free
);
impl IntegrationFixedWorkspace {
#[doc(alias = "gsl_integration_fixed_alloc")]
pub fn new(
type_: IntegrationFixedType,
n: usize,
a: f64,
b: f64,
alpha: f64,
beta: f64,
) -> Option<IntegrationFixedWorkspace> {
let tmp = unsafe {
sys::gsl_integration_fixed_alloc(type_.unwrap_shared(), n, a, b, alpha, beta)
};
if tmp.is_null() {
None
} else {
Some(Self::wrap(tmp))
}
}
#[doc(alias = "gsl_integration_fixed_n")]
pub fn n(&self) -> usize {
unsafe { sys::gsl_integration_fixed_n(self.unwrap_shared()) }
}
#[doc(alias = "gsl_integration_fixed_nodes")]
pub fn nodes(&self) -> Option<&[f64]> {
let tmp = unsafe { sys::gsl_integration_fixed_nodes(self.unwrap_shared()) };
if tmp.is_null() {
return None;
}
unsafe { Some(::std::slice::from_raw_parts(tmp, self.n())) }
}
#[doc(alias = "gsl_integration_fixed_weights")]
pub fn weights(&self) -> Option<&[f64]> {
let tmp = unsafe { sys::gsl_integration_fixed_weights(self.unwrap_shared()) };
if tmp.is_null() {
return None;
}
unsafe { Some(::std::slice::from_raw_parts(tmp, self.n())) }
}
#[doc(alias = "gsl_integration_fixed")]
pub fn fixed<F: Fn(f64) -> f64>(&self, f: F) -> (::Value, f64) {
let mut result = 0.;
let function = wrap_callback!(f, F);
let ret =
unsafe { sys::gsl_integration_fixed(&function, &mut result, self.unwrap_shared()) };
(::Value::from(ret), result)
}
}
ffi_wrapper!(IntegrationWorkspace, *mut sys::gsl_integration_workspace, gsl_integration_workspace_free,
"The QAG algorithm is a simple adaptive integration procedure. The integration region is divided
into subintervals, and on each iteration the subinterval with the largest estimated error is
bisected. This reduces the overall error rapidly, as the subintervals become concentrated
around local difficulties in the integrand. These subintervals are managed by a
gsl_integration_workspace struct, which handles the memory for the subinterval ranges, results
and error estimates.");
impl IntegrationWorkspace {
/// This function allocates a workspace sufficient to hold n double precision intervals, their
/// integration results and error estimates. One workspace may be used multiple times as all
/// necessary reinitialization is performed automatically by the integration routines.
#[doc(alias = "gsl_integration_workspace_alloc")]
pub fn new(n: usize) -> Option<IntegrationWorkspace> {
let tmp = unsafe { sys::gsl_integration_workspace_alloc(n) };
if tmp.is_null() {
None
} else {
Some(Self::wrap(tmp))
}
}
pub fn limit(&self) -> usize {
unsafe { (*self.unwrap_shared()).limit }
}
pub fn size(&self) -> usize {
unsafe { (*self.unwrap_shared()).size }
}
pub fn nrmax(&self) -> usize {
unsafe { (*self.unwrap_shared()).nrmax }
}
pub fn i(&self) -> usize {
unsafe { (*self.unwrap_shared()).i }
}
pub fn maximum_level(&self) -> usize {
unsafe { (*self.unwrap_shared()).maximum_level }
}
/// This function applies an integration rule adaptively until an estimate of the integral of f
/// over (a,b) is achieved within the desired absolute and relative error limits, epsabs and
/// epsrel. The function returns the final approximation, result, and an estimate of the
/// absolute error, abserr. The integration rule is determined by the value of key, which should
/// be chosen from the following symbolic names,
///
/// GSL_INTEG_GAUSS15 (key = 1)
///
/// GSL_INTEG_GAUSS21 (key = 2)
///
/// GSL_INTEG_GAUSS31 (key = 3)
///
/// GSL_INTEG_GAUSS41 (key = 4)
///
/// GSL_INTEG_GAUSS51 (key = 5)
///
/// GSL_INTEG_GAUSS61 (key = 6)
///
/// corresponding to the 15f64, 21f64, 31f64, 41f64, 51 and 61 point Gauss-Kronrod rules. The
/// higher-order rules give better accuracy for smooth functions, while lower-order rules save
/// time when the function contains local difficulties, such as discontinuities.
///
/// On each iteration the adaptive integration strategy bisects the interval with the largest
/// error estimate. The subintervals and their results are stored in the memory provided by
/// workspace. The maximum number of subintervals is given by limit, which may not exceed the
/// allocated size of the workspace.
///
/// Returns `(result, abs_err)`.
#[doc(alias = "gsl_integration_qag")]
pub fn qag<F: Fn(f64) -> f64>(
&mut self,
f: F,
a: f64,
b: f64,
epsabs: f64,
epsrel: f64,
limit: usize,
key: enums::GaussKronrodRule,
) -> (::Value, f64, f64) {
let mut result = 0.;
let mut abs_err = 0.;
let function = wrap_callback!(f, F);
let ret = unsafe {
sys::gsl_integration_qag(
&function,
a,
b,
epsabs,
epsrel,
limit,
key.into(),
self.unwrap_unique(),
&mut result,
&mut abs_err,
)
};
(::Value::from(ret), result, abs_err)
}
/// This function applies the Gauss-Kronrod 21-point integration rule adaptively until an
/// estimate of the integral of f over (a,b) is achieved within the desired absolute and
/// relative error limits, epsabs and epsrel. The results are extrapolated using the
/// epsilon-algorithm, which accelerates the convergence of the integral in the presence of
/// discontinuities and integrable singularities. The function returns the final approximation
/// from the extrapolation, result, and an estimate of the absolute error, abserr. The
/// subintervals and their results are stored in the memory provided by workspace. The maximum
/// number of subintervals is given by limit, which may not exceed the allocated size of the
/// workspace.
///
/// Returns `(result, abs_err)`.
#[doc(alias = "gsl_integration_qags")]
pub fn qags<F: Fn(f64) -> f64>(
&mut self,
f: F,
a: f64,
b: f64,
epsabs: f64,
epsrel: f64,
limit: usize,
) -> (::Value, f64, f64) {
let mut result = 0.;
let mut abs_err = 0.;
let function = wrap_callback!(f, F);
let ret = unsafe {
sys::gsl_integration_qags(
&function,
a,
b,
epsabs,
epsrel,
limit,
self.unwrap_unique(),
&mut result,
&mut abs_err,
)
};
(::Value::from(ret), result, abs_err)
}
/// This function applies the adaptive integration algorithm QAGS taking account of the
/// user-supplied locations of singular points. The array pts of length npts should contain the
/// endpoints of the integration ranges defined by the integration region and locations of the
/// singularities.
///
/// For example, to integrate over the region (a,b) with break-points at x_1, x_2, x_3
/// (where a < x_1 < x_2 < x_3 < b) the following pts array should be used
///
/// ```text
/// pts[0] = a
/// pts[1] = x_1
/// pts[2] = x_2
/// pts[3] = x_3
/// pts[4] = b
/// with npts = 5.
/// ```
///
/// If you know the locations of the singular points in the integration region then this routine
/// will be faster than QAGS.
///
/// Returns `(result, abs_err)`.
#[doc(alias = "gsl_integration_qagp")]
pub fn qagp<F: Fn(f64) -> f64>(
&mut self,
f: F,
pts: &mut [f64],
epsabs: f64,
epsrel: f64,
limit: usize,
) -> (::Value, f64, f64) {
let mut result = 0.;
let mut abs_err = 0.;
let function = wrap_callback!(f, F);
let ret = unsafe {
sys::gsl_integration_qagp(
&function,
pts.as_mut_ptr(),
pts.len() as _,
epsabs,
epsrel,
limit,
self.unwrap_unique(),
&mut result,
&mut abs_err,
)
};
(::Value::from(ret), result, abs_err)
}
/// This function computes the integral of the function f over the infinite interval
/// `(-\infty,+\infty)`. The integral is mapped onto the semi-open interval `(0,1]` using the
/// transformation:
///
/// ```text
/// x = (1-t)/t,
///
/// \int_{-\infty}^{+\infty} dx f(x) =
/// \int_0^1 dt (f((1-t)/t) + f((-1+t)/t))/t^2.
/// ```
///
/// It is then integrated using the QAGS algorithm. The normal 21-point Gauss-Kronrod rule of
/// QAGS is replaced by a 15-point rule, because the transformation can generate an integrable
/// singularity at the origin. In this case a lower-order rule is more efficient.
///
/// Returns `(result, abs_err)`.
#[doc(alias = "gsl_integration_qagi")]
pub fn qagi<F: Fn(f64) -> f64>(
&mut self,
f: F,
epsabs: f64,
epsrel: f64,
limit: usize,
) -> (::Value, f64, f64) {
let mut result = 0.;
let mut abs_err = 0.;
let mut function = wrap_callback!(f, F);
let ret = unsafe {
sys::gsl_integration_qagi(
&mut function,
epsabs,
epsrel,
limit,
self.unwrap_unique(),
&mut result,
&mut abs_err,
)
};
(::Value::from(ret), result, abs_err)
}
/// This function computes the integral of the function f over the semi-infinite interval
/// `(a,+\infty)`. The integral is mapped onto the semi-open interval `(0,1]` using the
/// transformation:
///
/// ```text
/// x = a + (1-t)/t,
///
/// \int_{a}^{+\infty} dx f(x) =
/// \int_0^1 dt f(a + (1-t)/t)/t^2
/// ```
///
/// and then integrated using the QAGS algorithm.
///
/// Returns `(result, abs_err)`.
#[doc(alias = "gsl_integration_qagiu")]
pub fn qagiu<F: Fn(f64) -> f64>(
&mut self,
f: F,
a: f64,
epsabs: f64,
epsrel: f64,
limit: usize,
) -> (::Value, f64, f64) {
let mut result = 0.;
let mut abs_err = 0.;
let mut function = wrap_callback!(f, F);
let ret = unsafe {
sys::gsl_integration_qagiu(
&mut function,
a,
epsabs,
epsrel,
limit,
self.unwrap_unique(),
&mut result,
&mut abs_err,
)
};
(::Value::from(ret), result, abs_err)
}
/// This function computes the integral of the function f over the semi-infinite interval
/// `(-\infty,b)`. The integral is mapped onto the semi-open interval `(0,1]` using the
/// transformation:
///
/// ```text
/// x = b - (1-t)/t,
///
/// \int_{-\infty}^{b} dx f(x) =
/// \int_0^1 dt f(b - (1-t)/t)/t^2
/// ```
///
/// and then integrated using the QAGS algorithm.
///
/// Returns `(result, abs_err)`.
#[doc(alias = "gsl_integration_qagil")]
pub fn qagil<F: Fn(f64) -> f64>(
&mut self,
f: F,
b: f64,
epsabs: f64,
epsrel: f64,
limit: usize,
) -> (::Value, f64, f64) {
let mut result = 0.;
let mut abs_err = 0.;
let mut function = wrap_callback!(f, F);
let ret = unsafe {
sys::gsl_integration_qagil(
&mut function,
b,
epsabs,
epsrel,
limit,
self.unwrap_unique(),
&mut result,
&mut abs_err,
)
};
(::Value::from(ret), result, abs_err)
}
/// This function computes the Cauchy principal value of the integral of f over `(a,b)`, with a
/// singularity at c,
///
/// ```text
/// I = \int_a^b dx f(x) / (x - c)
/// ```
///
/// The adaptive bisection algorithm of QAG is used, with modifications to ensure that
/// subdivisions do not occur at the singular point x = c.
///
/// When a subinterval contains the point x = c or is close to it then a special 25-point
/// modified Clenshaw-Curtis rule is used to control the singularity. Further away from the
/// singularity the algorithm uses an ordinary 15-point Gauss-Kronrod integration rule.
///
/// Returns `(result, abs_err)`.
#[doc(alias = "gsl_integration_qawc")]
pub fn qawc<F: Fn(f64) -> f64>(
&mut self,
f: F,
a: f64,
b: f64,
c: f64,
epsabs: f64,
epsrel: f64,
limit: usize,
) -> (::Value, f64, f64) {
let mut result = 0.;
let mut abs_err = 0.;
let mut function = wrap_callback!(f, F);
let ret = unsafe {
sys::gsl_integration_qawc(
&mut function,
a,
b,
c,
epsabs,
epsrel,
limit,
self.unwrap_unique(),
&mut result,
&mut abs_err,
)
};
(::Value::from(ret), result, abs_err)
}
}
ffi_wrapper!(
IntegrationQawsTable,
*mut sys::gsl_integration_qaws_table,
gsl_integration_qaws_table_free,
"The QAWS algorithm is designed for integrands with algebraic-logarithmic singularities at the
end-points of an integration region. In order to work efficiently the algorithm requires a
precomputed table of Chebyshev moments."
);
impl IntegrationQawsTable {
/// This function allocates space for a gsl_integration_qaws_table struct describing a singular
/// weight function W(x) with the parameters `alpha`, `beta`, `mu` and `nu`,
///
/// ```text
/// W(x) = (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x)
/// ```
///
/// where `alpha > -1f64`, `beta > -1f64`, and `mu = 0, 1`, `nu = 0, 1`. The weight function can
/// take four different forms depending on the values of `mu` and `nu`,
///
/// ```text
/// W(x) = (x-a)^alpha (b-x)^beta (mu = 0, nu = 0)
/// W(x) = (x-a)^alpha (b-x)^beta log(x-a) (mu = 1, nu = 0)
/// W(x) = (x-a)^alpha (b-x)^beta log(b-x) (mu = 0, nu = 1)
/// W(x) = (x-a)^alpha (b-x)^beta log(x-a) log(b-x) (mu = 1, nu = 1)
/// ```
///
/// The singular points (a,b) do not have to be specified until the integral is computed, where
/// they are the endpoints of the integration range.
///
/// The function returns a pointer to the newly allocated table gsl_integration_qaws_table if no
/// errors were detected, and 0 in the case of error.
#[doc(alias = "gsl_integration_qaws_table_alloc")]
pub fn new(alpha: f64, beta: f64, mu: i32, nu: i32) -> Option<IntegrationQawsTable> {
let tmp = unsafe { sys::gsl_integration_qaws_table_alloc(alpha, beta, mu, nu) };
if tmp.is_null() {
None
} else {
Some(Self::wrap(tmp))
}
}
/// This function modifies the parameters (\alpha, \beta, \mu, \nu)
#[doc(alias = "gsl_integration_qaws_table_set")]
pub fn set(&mut self, alpha: f64, beta: f64, mu: i32, nu: i32) -> ::Value {
::Value::from(unsafe {
sys::gsl_integration_qaws_table_set(self.unwrap_unique(), alpha, beta, mu, nu)
})
}
/// This function computes the integral of the function f(x) over the interval (a,b) with the
/// singular weight function `(x-a)^\alpha (b-x)^\beta \log^\mu (x-a) \log^\nu (b-x)`. The
/// parameters of the weight function (\alpha, \beta, \mu, \nu) are taken from the table self.
/// The integral is,
///
/// ```text
/// I = \int_a^b dx f(x) (x-a)^alpha (b-x)^beta log^mu (x-a) log^nu (b-x).
/// ```
///
/// The adaptive bisection algorithm of QAG is used. When a subinterval contains one of the
/// endpoints then a special 25-point modified Clenshaw-Curtis rule is used to control the
/// singularities. For subintervals which do not include the endpoints an ordinary 15-point
/// Gauss-Kronrod integration rule is used.
///
/// Returns `(result, abs_err)`
#[doc(alias = "gsl_integration_qaws")]
pub fn qaws<F: Fn(f64) -> f64>(
&mut self,
f: F,
a: f64,
b: f64,
epsabs: f64,
epsrel: f64,
limit: usize,
workspace: &mut IntegrationWorkspace,
) -> (::Value, f64, f64) {
let mut result = 0.;
let mut abs_err = 0.;
let mut function = wrap_callback!(f, F);
let ret = unsafe {
sys::gsl_integration_qaws(
&mut function,
a,
b,
self.unwrap_unique(),
epsabs,
epsrel,
limit,
workspace.unwrap_unique(),
&mut result,
&mut abs_err,
)
};
(::Value::from(ret), result, abs_err)
}
}
ffi_wrapper!(
IntegrationQawoTable,
*mut sys::gsl_integration_qawo_table,
gsl_integration_qawo_table_free,
"The QAWO algorithm is designed for integrands with an oscillatory factor, `sin(omega x)` or
`cos(omega x)`. In order to work efficiently the algorithm requires a table of Chebyshev moments
which must be pre-computed with calls to the functions below."
);
impl IntegrationQawoTable {
/// This function allocates space for a gsl_integration_qawo_table struct and its associated
/// workspace describing a sine or cosine weight function W(x) with the parameters (\omega, L),
///
/// ```text
/// W(x) = sin(omega x)
/// W(x) = cos(omega x)
/// ```
///
/// The parameter L must be the length of the interval over which the function will be
/// integrated L = b - a. The choice of sine or cosine is made with the parameter sine which
/// should be chosen from one of the two following symbolic values:
///
/// ```text
/// ::Cosine
/// ::IntegrationQawo::Sine
/// ```
///
/// The gsl_integration_qawo_table is a table of the trigonometric coefficients required in the
/// integration process. The parameter n determines the number of levels of coefficients that
/// are computed. Each level corresponds to one bisection of the interval L, so that n levels
/// are sufficient for subintervals down to the length L/2^n. The integration routine
/// gsl_integration_qawo returns the error ::Table if the number of levels is insufficient for
/// the requested accuracy.
#[doc(alias = "gsl_integration_qawo_table_alloc")]
pub fn new(
omega: f64,
l: f64,
sine: ::IntegrationQawo,
n: usize,
) -> Option<IntegrationQawoTable> {
let tmp = unsafe { sys::gsl_integration_qawo_table_alloc(omega, l, sine.into(), n) };
if tmp.is_null() {
None
} else {
Some(Self::wrap(tmp))
}
}
/// This function changes the parameters omega, L and sine of the existing self workspace.
#[doc(alias = "gsl_integration_qawo_table_set")]
pub fn set(&mut self, omega: f64, l: f64, sine: ::IntegrationQawo) -> ::Value {
::Value::from(unsafe {
sys::gsl_integration_qawo_table_set(self.unwrap_unique(), omega, l, sine.into())
})
}
/// This function allows the length parameter l of the self workspace to be changed.
#[doc(alias = "gsl_integration_qawo_table_set_length")]
pub fn set_length(&mut self, l: f64) -> ::Value {
::Value::from(unsafe {
sys::gsl_integration_qawo_table_set_length(self.unwrap_unique(), l)
})
}
/// This function uses an adaptive algorithm to compute the integral of f over (a,b) with the
/// weight function \sin(\omega x) or \cos(\omega x) defined by the table `wf`,
///
/// I = \int_a^b dx f(x) sin(omega x)
/// I = \int_a^b dx f(x) cos(omega x)
///
/// The results are extrapolated using the epsilon-algorithm to accelerate the convergence of
/// the integral. The function returns the final approximation from the extrapolation, result,
/// and an estimate of the absolute error, abserr. The subintervals and their results are
/// stored in the memory provided by workspace. The maximum number of subintervals is given by
/// limit, which may not exceed the allocated size of the workspace.
///
/// Those subintervals with “large” widths d where d\omega > 4 are computed using a 25-point
/// Clenshaw-Curtis integration rule, which handles the oscillatory behavior. Subintervals with
/// a "small" widths where d\omega < 4 are computed using a 15-point Gauss-Kronrod integration.
///
/// Returns `(result, abserr)`.
#[doc(alias = "gsl_integration_qawo")]
pub fn qawo<F: Fn(f64) -> f64>(
&mut self,
f: F,
a: f64,
epsabs: f64,
epsrel: f64,
limit: usize,
workspace: &mut IntegrationWorkspace,
) -> (::Value, f64, f64) {
let mut function = wrap_callback!(f, F);
let mut result = 0.;
let mut abserr = 0.;
let ret = unsafe {
sys::gsl_integration_qawo(
&mut function,
a,
epsabs,
epsrel,
limit,
workspace.unwrap_unique(),
self.unwrap_unique(),
&mut result,
&mut abserr,
)
};
(::Value::from(ret), result, abserr)
}
}
ffi_wrapper!(CquadWorkspace, *mut sys::gsl_integration_cquad_workspace, gsl_integration_cquad_workspace_free,
"CQUAD is a new doubly-adaptive general-purpose quadrature routine which can handle most types of
singularities, non-numerical function values such as Inf or NaN, as well as some divergent
integrals. It generally requires more function evaluations than the integration routines in
QUADPACK, yet fails less often for difficult integrands.
The underlying algorithm uses a doubly-adaptive scheme in which Clenshaw-Curtis quadrature rules
of increasing degree are used to compute the integral in each interval. The L_2-norm of the
difference between the underlying interpolatory polynomials of two successive rules is used as
an error estimate. The interval is subdivided if the difference between two successive rules is
too large or a rule of maximum degree has been reached.");
impl CquadWorkspace {
/// This function allocates a workspace sufficient to hold the data for n intervals. The number
/// n is not the maximum number of intervals that will be evaluated. If the workspace is full,
/// intervals with smaller error estimates will be discarded. A minimum of 3 intervals
/// is required and for most functions, a workspace of size 100 is sufficient.
#[doc(alias = "gsl_integration_cquad_workspace_alloc")]
pub fn new(n: usize) -> Option<CquadWorkspace> {
let tmp = unsafe { sys::gsl_integration_cquad_workspace_alloc(n) };
if tmp.is_null() {
None
} else {
Some(Self::wrap(tmp))
}
}
/// This function computes the integral of f over (a,b) within the desired absolute and relative
/// error limits, epsabs and epsrel using the CQUAD algorithm. The function returns the final
/// approximation, result, an estimate of the absolute error, abserr, and the number of function
/// evaluations required, nevals.
///
/// The CQUAD algorithm divides the integration region into subintervals, and in each iteration,
/// the subinterval with the largest estimated error is processed. The algorithm uses
/// Clenshaw-Curits quadrature rules of degree 4, 8, 16 and 32 over 5, 9, 17 and 33 nodes
/// respectively. Each interval is initialized with the lowest-degree rule. When an interval is
/// processed, the next-higher degree rule is evaluated and an error estimate is computed based
/// on the L_2-norm of the difference between the underlying interpolating polynomials of both
/// rules. If the highest-degree rule has already been used, or the interpolatory polynomials
/// differ significantly, the interval is bisected.
///
/// The subintervals and their results are stored in the memory provided by workspace. If the
/// error estimate or the number of function evaluations is not needed, the pointers abserr and
/// nevals can be set to NULL (not in rgsl).
///
/// Returns `(result, abs_err, n_evals)`.
#[doc(alias = "gsl_integration_cquad")]
pub fn cquad<F: Fn(f64) -> f64>(
&mut self,
f: F,
a: f64,
b: f64,
epsabs: f64,
epsrel: f64,
) -> (::Value, f64, f64, usize) {
let function = wrap_callback!(f, F);
let mut result = 0.;
let mut abs_err = 0.;
let mut n_evals = 0;
let ret = unsafe {
sys::gsl_integration_cquad(
&function,
a,
b,
epsabs,
epsrel,
self.unwrap_unique(),
&mut result,
&mut abs_err,
&mut n_evals,
)
};
(::Value::from(ret), result, abs_err, n_evals)
}
}
ffi_wrapper!(GLFixedTable, *mut sys::gsl_integration_glfixed_table, gsl_integration_glfixed_table_free,
"The fixed-order Gauss-Legendre integration routines are provided for fast integration of smooth
functions with known polynomial order. The n-point Gauss-Legendre rule is exact for polynomials
of order 2*n-1 or less. For example, these rules are useful when integrating basis functions to
form mass matrices for the Galerkin method. Unlike other numerical integration routines within
the library, these routines do not accept absolute or relative error bounds.");
impl GLFixedTable {
/// This function determines the Gauss-Legendre abscissae and weights necessary for an n-point
/// fixed order integration scheme. If possible, high precision precomputed coefficients are
/// used. If precomputed weights are not available, lower precision coefficients are computed
/// on the fly.
#[doc(alias = "gsl_integration_glfixed_table_alloc")]
pub fn new(n: usize) -> Option<GLFixedTable> {
let tmp = unsafe { sys::gsl_integration_glfixed_table_alloc(n) };
if tmp.is_null() {
None
} else {
Some(Self::wrap(tmp))
}
}
/// For i in [0, …, t->n - 1], this function obtains the i-th Gauss-Legendre point xi and weight
/// wi on the interval [a,b]. The points and weights are ordered by increasing point value. A
/// function f may be integrated on [a,b] by summing wi * f(xi) over i.
///
/// Returns `(Value, xi, wi)`.
#[doc(alias = "gsl_integration_glfixed_point")]
pub fn point(&self, a: f64, b: f64, i: usize) -> (::Value, f64, f64) {
let mut xi = 0.;
let mut wi = 0.;
let ret = unsafe {
sys::gsl_integration_glfixed_point(a, b, i, &mut xi, &mut wi, self.unwrap_shared())
};
(::Value::from(ret), xi, wi)
}
/// This function applies the Gauss-Legendre integration rule contained in table self and
/// returns the result.
#[doc(alias = "gsl_integration_glfixed")]
pub fn glfixed<F: Fn(f64) -> f64>(&self, f: F, a: f64, b: f64) -> f64 {
let function = wrap_callback!(f, F);
unsafe { sys::gsl_integration_glfixed(&function, a, b, self.unwrap_shared()) }
}
#[doc(alias = "gsl_integration_glfixed_point")]
pub fn glfixed_point(&self, a: f64, b: f64, xi: &mut [f64], wi: &mut [f64]) -> Value {
assert!(xi.len() == wi.len());
Value::from(unsafe {
sys::gsl_integration_glfixed_point(
a,
b,
xi.len() as _,
xi.as_mut_ptr(),
wi.as_mut_ptr(),
self.unwrap_shared(),
)
})
}
}